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Modulation of DNA-Mediated Hole-Transport Table 1. Sequences of Oligomers Used for HT Experiménts
Efficiency by Changing Superexchange Electronic 13 -M-XC ACAC CCAA TAAC CC-Vi5'
Interaction 215! N-AG,TGTGeGCTT ATTG14GC-W-3"

' - N-AG,TGTGsECTTZATTG: (GG -W-3 |

4:3' M-XC ACAC CCAA CAAC CCEV-5'

5:5' N-AG;TCTG,GETT GITG,GE-W-3"

: 4G, TCTGCOTTIATTG G- W3
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While DNA-mediated charge transport (CT) has been experi- .
mentally verified on DNAs containing various electron donor |
acceptor systenis; the efficiency and mechanism of CT still L
remain uncleat®® One mechanism assuming instantaneous (GGG)™ g* (G14GG)™
delocalization of base radical cation (hole) over all DNA bases

by superexchandghas recently been acknowledged to be less (GLGG) via putativeB+ with estimates of free energy changsd,

likely in Iong-rgnge hole transport (HT); however, the hole can eV).1*The numbers in parentheses are the difference of IPs (eV) between
travel a long distance by a consecutive hopping process between; s ands.

neighboring guanines (G§)2¢4*7" The basis of the hopping
mechanism is that a guanine radical cation"j&annot oxidize
adenine (A) due to the higher ionization potential (IP) of A
compared with that of G, but can oxidize another G. We
previously reported that (i) the IP of G is highly dependent on
the flanking sequences and (ii) stacked Gs such as G doublet (GG
and triplet (GGG) possessing much lower IPs than that of isolated
G can serve as an effective hole tfd\s a consequence, when HT through the. DNAn-stack._ i .

a hole donor is a radical cation of G triplet (G@G)an isolated The modulation of HT efficiency by changing the IP of a
G cannot be a hole acceptor due to the large free energy required?ridged base was investigated on a 29-mer duplex containing a
for the proces4? but may act as a bridged base lowering the I[P Probe sequence of &,G,T GTGGZGGT TBT TG1G G-3 with

of the bridge between two G triplets. It is actually predicted by 2& bridged baseB) of A (ODN 2), *A (ODN 3), G (ODN 5), or
electron transfer theory that lowering the IP of a bridge increases “C (OPN 6) (Table 1). Upon photoirradiation of the duplex, the
the electronic coupling for the superexchange interaction between0l€ was site-selectively generated ai 6y a single electron
donor and acceptd® To know more closely the effect of IP of transfer to a photoexcited cyanobenzophenone-substituted 2

bridged bases on HT efficiency, we have examined HT between deoxyuridine (§"°"U) opposite A in the complementary strand
(ODNs1 and4), and then irreversibly migrated to a proximal G

1.76 (1.48)

Figure 1. Schematic illustration of energy diagram for HT frong"Gto

two G triplets separated by a bridge of BTT containing a

bridged baseR) of A, 7-deazaA {A), G, or 7-deazaG*G). We

herein report for the first time that the efficiency of DNA-mediated
T markedly increases with decreasing IP of the bridged base.
urthermore?G was shown to be an extremely efficient trap in

97(1% (Zi)l '\IllmgzéM-BE-;tHal[,] DK-JB-A Baf(t:%n, J. gcgggy ?ilo-l 159(‘3949« 55,5 gig triplet (GsGG).12 A distal G triplet (34GG) is separated from a
© Nl B B Hilan e E < Barton ) Khiatore 1006 355 731734 proximal G triplet by five base pairs via TBTT with a bridged
(2) (@) Kan, Y.; Schuster, G. Bl. Am. Chem. Sod.999 121, 11607 baseB in the middle. The calculated IPs of GGG, 2, G, and
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Letsinger, R. L.; Greenfield, S. R.; Wasielewski, M. &ciencel997, 277, elr c_omp_emen ary strands. buple d by T "?m _Were
673-676. photoirradiated at 312 nm for 1 h. G oxidation sites were
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Figure 2. An autoradiogram of the denaturing sequencing gel for
photoreactions of duplexd#2, 1/3, 4/5, and4/6. 5-3?P-End-labeled ODNs

2, 3, 5, and6 were hybridized to the complementary strahar 4 (2

uM, strand concentration) in 10 mM sodium cacodylate at pH 7.0.
Duplexes were irradiaded at 312 nm with transilluminator &€Cor 1

h under atmospheric conditions. After piperidine treatment°®020
min), ODNs were electrophoresed through a denaturing 15% polyacry-
lamide/7 M urea gel. Lanes13, 6, and 8, ODNp; lane 4, ODN2; lane

5, ODN3; lane 7, ODN6; ODNSss in lanes 3-7 were photoirradiated; all
ODNSs except in lane 3 were heated with piperidine; lanes 1 and 8,
Maxam—Gilbert G + A sequencing reactions for ODBl Partial base
sequences of ODNs were shown on the si@&8tU was located opposite

A; shown with a box.
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Figure 3. Graphical illustration of normalized intensities of cleavage
bands at G G;, B, Gis, and Gs for oligomers2, 3, 5, and 6. Data

Communications to the Editor

with those of ODNs2, 3, and 5, indicating that?G not only
terminates HT but also effectively drags a hole into its own'Site.

Our experiments described here clearly show that (i) HT
through a bridge of five AT base pairs proceeds with extremely
low efficiency, (ii) HT is effectively mediated when the bridge
containgA or G, (iii) cleavage intensities at the proximal G triplet
are much higher than those at the distal G triplet, (iv) HT
efficiency significantly increases by lowering the IP of the bridged
base, and (v) HT is terminated at the sité®f Stronger cleavage
at the proximal G triplet than at the distal G triplet observed
for ODNs 2 and 3 indicates that the rateki,) for trapping of
(GGG)* with oxygen eventually giving piperidine labile products
(Ps and Ry) exceeds the ratdg(r) for HT (Scheme 1).Assuming

Scheme 1.Kinetic Scheme for Hole Hopping

+ -+ ki +
Gy"— (G¢GG)" ——— (G4,G0)
[ Kuap |

Pg (Ige) Py (g1a)

a very weak directional preference of HT between two G triplets,
the rate for HT relative to hole trapping for ODNs 3, and5
would be estimated by thks141c6 value. Lowering the IP of a
bridged base by 0.32 eV (frofh to G) increasedci4lce 1.4-

fold (Figure 3). These results clearly show that HT efficiency is
sensitively modulated by IPs of the bridged base, suggesting that
HT between two G triplets with bridges of TATT and TTGTT
proceeds via a superexchange mechanism. Lowering the IP of
the bridged base increased the electronic coupling for the
superexchange interaction between the two G trigfelurther
lowering the IP at the bridged base, by replacing G Wit
resulted in HT from (GGG) actually inducing oxidation of the
bridged base€?G.1° These results show that the efficiency of HT
through DNAz-stack is highly sequence dependé&nt.
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represents average of three data sets. Intensities are normalized so that Supporting Information Available: Autoradiography for photooxi-

the strongest cleavage is 1.0Q:4lcs for ODNs 2, 3, and5 was 0.05,
0.42, and 0.59, respectively.

hot piperidine treatment on the PAGE shown in Figure 2. As
note in our previous communicatidrthe G oxidation increases
linearly with irradiation time. Normalized intensities of the
cleavage bands are graphically shown in Figure 3. G oxidation

of ODN 2 having adenine as a bridged base occurred selectively

at G and G in a proximal G triplet (lane 4). Cleavage intensities
decreased in the order middle GA4G> 5'G (Gg), indicating a
typical one-electron oxidation at the TGGGT sequefidgand
intensity at G,GG relative to that at €5G (Ic14lce) Was only
0.05, confirming previous observations that HT through five AT
base pairs proceeds with extremely low efficied®yIn sharp
contrast, cleavage atigwas observed for ODNS and 5

dation of duplexd/6 with riboflavin, and HPLC profile of photoreaction
of ODN containing?G (PDF). This material is available free of charge
via the Internet at http://pubs.acs.org.

JA994113Y

(16) HPLC analysis of the nucleoside mixture of photoirradiated duplex
d(GTCCACXATC)/d(GATAGTG GAC) after heating with piperidine showed
a complete disappearance’d, whereas more than 80% of X{¢#FU) was
recovered unchanged together with almost quantitative recovery of A, C, G,
and T (see Supporting Information). This indicates tais actually oxidized
and decomposed to a piperidine labile site under the photoirradiation
conditions.

(17) These results were further supported by the observation that one-
electron oxidation of duplex/6 by an external oxidizing agent such as
photoexcited riboflavin produced a similar cleavage pattern as observed for
lane 7 in Figure 2 (see Supporting Information).

(18) In addition toAG term, reorganization energy)(of a bridged base
radical cation would also affect electronic coupling. Large increase of the
HT efficiency by replacing A witlfA may suggest extra effects of decreased

containing?A and G as a bridged base, respectively (lanes 5 and 1 for zA*".

6). lg1dlcs was 0.42 for ODN3 (B = ?A) and increased to 0.59
for ODN 5 (B = G). The trajectory of HT dramatically changed
when?G was incorporated into the bridge between two G triplets.
Intensive cleavage of ODR occurred selectively &G but not

at all at the Gy triplet (lane 7, Figure 23¢ Furthermore, the
cleavage at gof ODN 6 was significantly suppressed compared

(15) Yoshioka, Y.; Kitagawa, Y.; Takano, Y.; Yamaguchi, K.; Nakamura,
T.; Saito, 1.J. Am. Chem. S0d.999 121, 8712-8719.

(19) Our calculations show th&s is not a better thermodynamic sink for
HT than G triplet, suggesting that the selective cleavage of GG is
most likely due to a kinetic factor, e.g., the trapping raté@f leading to a
piperidine labile site would be significantly higher than that for (GGG)

(20) One reviewer questioned whether hole migration between two GGGs
on the complementary strand could be trapped®ybecause 8-OxoG was
not an efficient hole trap when the hole migration took place on the
complementary strariWhile we proposed a different mechanism for efficient
hole trapping by'G from that by 8-OxoG? hole-trapping efficiency byG
may be different between the migration from strand to complementary strand
and the migration along a strand.



